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Abstract. Applications of the mathematical formalism put forward in the previous paper 
are made to a number of well known lattice models in statistical mechanics. Sequences 
of algebraic curves are obtained from the branches of an algebraic function A , ,  where A: 
at real temperatures is the branch of A, which is the partition function per site of an m x 05 

lattice section. These sequences are viewed as approximations to parts of the limiting locus 
C,  of partition function zeros. Approximations to critical points can be obtained in a 
natural extension of these curves beyond the branch points of A;. 

1. Introduction 

In the previous paper Wood (1987, hereafter referred to as I)  has put forward a 
mathematical formalism which attempts to describe the way in which the limiting locus 
of partition function zeros C, for the one-parameter lattice models of statistical 
mechanics is approached via an infinite sequence of algebraic curves C z  generated 
by the connection curves of the eigenvalues of the block matrix T ~ ,  for m x 00 lattice 
sections. The partition function per site AT at real temperatures is a branch of the 
algebraic function A, defined by the characteristic equation of 7, and C y  denotes the 
locus of points where the eigenvalues of 7, are simultaneously maximum and equal 
in modulus. It is envisaged that AT on a sequence of m has increasingly many branch 
points in the complex temperature plane which yield a system of near overlapping 
connection curves convergent upon C,. In the present paper we define a very natural 
extension of the connection curves C: beyond the branch points. Such extensions 
generate intersections with the real positive temperature axis which form a convergent 
sequence of approximations to the critical point. In the few cases of two-dimensional 
models where the eigenvalues of 7, or of the whole transfer matrix Tn have simple 
invariance symmetries under an analytic transformation of the temperature variable 
(or other variables), at arbitrary values of m AT can have branch points on an invariant 
curve which also corresponds to our proposed extension of C z  through the complex 
branch points, and which is obtained at any specific value of m ;  the critical point is 
then obtained exactly. The duality and spin-field reversal symmetries of the general 
spin king models are both examples of this. 

Since for the most part C, is unknown, the validity of the formalism outlined in 
I in the present work can only be inferred from the accuracy of the approximations 
to the critical point obtained from the above extensions of CY. In addition to this, 
in the present examples where calculations have been performed for a few consecutive 
m values, the sequences of ‘near’ overlapping arc sections referred to above would 
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appear to be a reasonable description of the outcome. All the calculations reported 
here have been performed exactly in the sense that the resolvents which define C Q  
have been obtained exactly. An extension of the present calculations to larger values 
of m can be developed in a purely numerical way and these calculations will be 
reported elsewhere. In 8 2 we describe the algebraic computation of C z  and its 
extension beyond the branch points. The subsequent sections are specific applications 
to the following models: the q-state Potts model on the square and triangular lattices 
( 9  3), a non-planar two-dimensional Ising model (0 4), the spin-1 Ising model on the 
square lattice (§ 5 ) ,  the three-dimensional Ising model (0 6), models with three-spin 
interactions present (§  7), the general spin Ising model in a magnetic field (0 8 )  and 
the hard square and hard hexagon gases and the chromatic polynomial of the plane 
triangular lattice (§  9). 

2. Algebraic approximations to C, and critical points 

The hypothesis represented by the equation 

C,= lim C c  
m+oc 

(see (54) in I) can be used to form sequences of algebraic curves forming approximations 
to both the limiting locus of partition function zeros C, and critical points. Given 
any one-parameter model, for a finite value of m we can obtain the branch points and 
the connection curves Ck of the algebraic function A , ( z )  from the resolvent R ( z ,  h )  
defined in I where ( h (  = 1. We are interested in those connection curves C r  which 
originate from the branch points of AT and form a set of connections between these 
branch points. At the outset we do not know which subset of Ck belongs to C r .  An 
examination of the eigenvalues of T , ( z )  at each branch point and at intersection points 
is usually sufficient to identify C r .  

Following I (see 0 4 of I )  values of z on the curves belonging to C r  and connecting 
branch points can be identified with the existence of a real quadratic factor of the 
characteristic equation of T~ ( z ) :  

(2) 

where AT is a multiple of one of the roots of (2) given by AT = uy, where IuI = 1. In 
(2) the values of z are those of one of the algebraic functions z i ( h )  generated by the 
resolvent, and the coefficients b and c are real in the domain Ihl= 1. Those branch 
points of A: connected by z , ( h )  are the points z , ( l )  where (2) reduces to a perfect 
square. The connection curves and the resolvent are naturally mapped out in terms 
of the real variable 

(3) 
where the domain Ihl= 1 is the domain -T 4 4 zs r. In terms of w the quadratic factors 
(2) can be analytically extended to include the whole positive real line of w. This 
extended range corresponds to the range 

y 2 +  b ( z ) y  + c ( z )  = 0 

w = h(h+ h - I )  =cos 4 

Ihl= 1 h real (4) 

or equivalently adding the extension 4 + i 4  to (3). Extending the connection curves 
into the extended domain of h in (4) is a very natural analytic extension since the 
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quadratic factors (2)  remain real quadratic factors over the whole of the extended 
domain. In the extended domain the connection curves C r  are continued smoothly 
through the branch points and some of the extended curves intersect the real positive 
z axis at a specific value h, .  Beyond h,  the extended connection curves simply mark 
out a trajectory along the real axis. The intersection point on the real z axis from at 
least one extended curve forms an approximation to the critical point. For ( h (  = 1, 
zl( h )  consists of a complex conjugate pair of algebraic curves; in the extended domain 
the complex conjugate pair move on a curve which meets at the real axis point z,(h,) 
and hence this point is a multiple root (of at least multiplicity 2 )  of the resolvent 
R(z, h )  and h,  is a branch point of the branch z , ( h ) .  Thus the approximations z,(h,) 
to the critical point can be found precisely from the discriminant of the polynomial 
R(z, h )  which will locate the branch points of the algebraic function Z ( h )  in the h 
plane. One or more such branch points will be on the real positive h axis and correspond 
to the intersections of the extended curves C c  with the real positive z axis at z,(h,). 
These intersection points can be computed exactly from the roots of the resolvent. At 
h = h,  the branch z,(h) is non-analytic and an alternative determination of z,(h,) is 
possible by finding the roots of the equation 

dhldz  = 0 or dwldz = 0. ( 5 )  

The scheme above can be illustrated by an application to the nearest-neighbour 
two-dimensional Ising model on the simple quadratic lattice and the triangular lattice 
where C, is known exactly. The advantages of using the Ising model for illustrative 
purposes are that Onsager’s solution allows us to take m arbitrary and provides a basis 
of what to expect in dealing with other models. For the simple quadratic lattice A: 
for an arbitrary value of m is given by 

AT = (2s)”” fi exp( ~ ~ ~ - , / 2 )  (s = sinh 2 K )  (6) 
k = l  

where 

cosh y, = s -k s-l - cos r r /  m ( Y f  = Y z m - r )  ( 6 a )  

and A: is a branch of A,  generated by the characteristic equation r l .  A branch point 
set of A: is readily identified; taking positive signs for all the y in ( 6 )  except for yf 
and y z m - r  which are chosen to have negative signs, we define an eigenvalue A, .  Clearly 

A:/Ar = e2?P (7) 

and hence yf = 0 and yr  = i r  locate branch points of A: at a value of s given by the 
roots of the equation 

* I = s + s - ’ - c o s r r / m  (8) 
which are the complex conjugate pairs 

and 
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on the unit circle s = ei+. Thus as m increases AT has an increasing number of branch 
points all lying on the unit circle ( S I  = 1. The connection curves over the branch points 
in (9) are simply obtained by setting yr = ic$ in (7) which corresponds to the domain 
Ihl= 1 in (4) and are the curves obtained by the algebraic functions s(y) defined by 
the equation 

y = s + s - ’ - c o s  r v / m  - l a y s 1  (10) 
which are the two complex conjugate arcs of the circle Is1 = 1 joining the two branch 
points in (9) lying in the upper half plane and the two in the lower half plane. As m 
increases the connection curves C r  of form a system of overlapping arcs on Is1 = 1, 
none of which intersect the real axis. The algebraic functions s(y) are branches of a 
resolvent R(s ,  h )  and, using (lo), we can observe the extension of the connection 
curves in the extended domain of (4), where (10) becomes 

y = s + s-‘ -cos r v / m  y real (11) 
and the algebraic curves s(y) now cover the whole of the circle Is1 = 1. The critical 
point s, is the intersection of s(y) with the real axis, occurring at a branch point of 
s(y) which has two branch points at 

y = -cos( r v / m )  rfr 2 (12) 

s 2 =  1. (13) 

corresponding to the points s = *l. Alternatively (5) yields 

In this example the branch points of AT obtained for any finite value of m already 
lie on the limiting locus of partition function zeros where for all m the unit circle 
Is1 = 1 is an invariant in the domain (4) of the algebraic curves s(y). This invariance 
is a feature promoted by the self-duality of the model, which in this formalism is seen 
as a symmetry restricting the connection curves C c  to lie on the same curve for all 
values of m. This mechanism is fully discussed in the following section in relation to 
the behaviour of the general q-state Potts model. In terms of approaching the problem 
with a finite transfer matrix, consider again the simple quadratic Ising model but now 
with screw boundary conditions imposed (Domb 1949a, b). With a screw pitch of two 
the transfer matrix is given by 

/ 1  0 z o \  
T4(z)=[” O O J z = e  2K , 

O Z O Z *  
O Z O l  

In general there is no cyclic symmetry present with screw boundary conditions and 
consequently, instead of obtaining a block T ~ ,  we deal with the whole transfer matrix 
and consider the connection curves of the resolvent R4(z). The characteristic equation 
of T4 is in fact reducible into the two quadratic factors: 

A* - A( 1 + Z) - z(z*- 1) = o 
-A( 1 - Z) + z(z’- 1) = 0. 

(150) 

(15b) 
The branch points of the eigenvalues in (15a) and (15b) are at z=$*i f i /8  and 
z = -a*if i /8 ,  respectively, which are points on the two circles z = -1 +fi eie and 
z = 1 + f i  e”, respectively. It is easily verified that the branches z ( h )  obtained from 
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resolvents R(z, h )  constructed for each of (15a) and (15b) in the domain (4) trace out 
in full each of these two circles which are the limiting locus in the z plane (Fisher 
1965). Again self-duality symmetry for an arbitrary screw pitch m determines that the 
two circles are invariants in the connection curves for each value of m. 

For a further illustration consider the Ising model on the triangular lattice, where 
for m = 2 the characteristic equation of T~ is given by 

A:- z2(z4+3)A1 +z’(z - 1 ) 2 = 0  ( z  = eZK)  (16) 
one root of which is A:. For a quadratic equation with two roots A I  and A 2  the branches 
zi(h) obtained from the resolvent in the domain (4) are the roots of the equation 

where the domain lyl s 1 corresponds to Ihl= 1 in (4). The branch points are the roots 
of (17) at y = *l .  The branch points of A I  in (16) are the complex conjugate pair 

(18) 
and an isolated branch point at z2 = - 1 .  In the z2 plane the extended connection curve 
is given by 

z2 = 1 * 2i 

z2 = y (y2 - 2y - 3)1/2 

z2  = 1 + 2 eie. 

(19) 

(20) 

which for -1  d y s 3 is the circle 

The connection curve itself is the arc of (20)  connecting the points in (18) and passing 
through z2 = -1 .  The limiting locus of partition function zeros for the triangular lattice 
is the circle (20)  and the real line segment -1 C z C 0 (van Saarloos and Kurtze 1984, 
Wood 1985). Thus we see that in the new formalism the circle (20) has again been 
obtained exactly from the finite case of m = 2, where the exact critical point of the 
model at z: = 3 is obtained from the 2 x 2 block ~ ~ ( 2 ) .  However in this case the model 
is not self-dual and reference to the q-state Potts model in 0 3 shows that on the 
triangular lattice the case q = 2 is the only case where the critical point z, is obtained 
exactly in the extended domain (4). 

Although these examples illustrate the algebraic basis of the computations they are 
not typical of the hypothesis represented by (1) in that the domain of (4) has obtained 
the limiting locus exactly for m finite. Our expectation in general is that in the absence 
of symmetry which is independent of m the extended connection curves on a sequence 
of increasing m will converge onto C,. In this process branch points of A: will 
produce the connection curves Ck+ which will form approximately overlapping arc 
lengths in the convergence to C,, and the extensions of these connection curves in 
the domain (4) will produce approximations to the critical point z,. These two features 
(particularly the latter) are our guide in an initial assessment of the scheme when 
applied to models where C,  is not known, which of course is practically all cases. 
The appearance of extended connection curves which are invariants on a sequence of 
increasing m, as in the Ising model above, are possible when either the matrix ~ ~ ( 2 )  

or the whole transfer matrix possesses a simple algebraic symmetry which is transformed 
into analytic symmetries in the polynomial coefficients 4 j ( z )  of A “-J in the characteristic 
equation. Self-duality is an example of such a symmetry but similar effects are observed 
from different symmetries; examples are found in the general spin Ising model in a 
magnetic field and in the monomer-dimer problem. 
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3. The two-dimensional q-state Potts model 

The q-state Potts model on the simple quadratic lattice possesses self-dual symmetry 
where for a lattice of mn sites with toroidal boundary conditions the partition function 
Z,, ( q ,  K ) satisfies the simple relation 

where K and K *  are related by 

(e" - l)(e"* - 1) = q 

(for a review of duality relations and the Potts models see Wu (1982)). Writing (21) 
in the form 

z m n ( q ,  U ) =  U Z m n Z m n ( q ,  U-') (23) 

where U = (eK - 1)/dq we observe that A:(z) ( z  =e")  when mapped out in terms of 
the variable U satisfies the relation 

AT(q, U )  = u2"A:(q, U-'). (24) 

Now '4: is a branch of the algebraic function A I  defined by the characteristic equation 
of T , ( z )  and (24) applies to each branch of A l .  It follows from this that for any value 
of m where the irreducible characteristic equation of T~ is represented by 

the coefficients 4, which are polynomials in U satisfy the relation 

4 r ( u )  = u r @ r ( u )  (26) 

Q r ( U )  =@.,(U-') (27) 

where 

and hence the polynomials @, can be transformed into polynomials in the variable 
U + U-'. We see immediately that the circles IuI = 1, and U real for all q and all m, 
will be generated by the extended connection curves in the domain (4) formed from 
the resolvent R ( z ,  h )  constructed from (25). This follows trivially since on / U [  = 1 and 
U real the branches of A l ( z )  are either real or occur in constant multiples of complex 
conjugate pairs. The branch points of A: cannot lie on the positive real axis and hence 
are clearly likely to lie on the circle IuI = 1; we have recovered precisely the same 
invariance phenomena described for the q = 2 case above. Again branch points will 
occur on the unit circle 1uI = 1 and for increasing m connection curves will form systems 
of arcs. For each m the domain (4) produces the whole circle. Given that AT has 
branch points on IuI = 1 then the arcs connecting these points are part of C r ,  namely 
the limiting locus df zeros of the block partition function of the m x 00 strip. In the 
limit of m+oo at least one of these branch point pairs converge to the critical point 
zc=  1 +dq. The argument above only identifies the arcs on \ U /  = 1 as part of CL+; 
clearly the whole of CL+ can involve other curves not revealed by the duality symmetry. 
An interesting observation on the mathematical consequences of the duality symmetry 
is that on IuI = 1 branches of A I  other than A: will trace out the circles Iul= 1 on the 
domain (4). That is to say that a complex conjugate pair of eigenvalues (to within a 
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constant multiple) obtained from ( 2 5 )  and which are not on C? are also related to a 
branch point system with the connection curves of (4) tracing out all of IuI = 1. This 
example therefore suggests that at branch points where the two eigenvalues are equal 
but not of maximum modulus the connection curves on ( 4 )  may prove worth consider- 
ing, particularly if the extended curves have an intersection point with the real axis 
close to the critical point (see the spin-1 Ising model in 5 5 ) .  

The algebraic effects described above are all illustrated by taking the smallest value 
of m = 2. Here the characteristic equation of ~ ' ( 2 )  is given in equation ( 9 )  of I which 
in terms of the variable U is given by 

A:- u 2 [ q 2 ( u 2 +  C2)+ q ( 6 +  q ) + 4 q J q ( u  + u-')]A1 + u4[q(l + 9) + q J q ( u  + U-')]' = O .  
(28)  

Hence A, is of the form A I  = u2h where on ( u I  = 1 and the real axis the roots A(u)  are 
either real or complex conjugate pairs. Writing w = (U + U-'), the branch points of A: 
occur at roots of the equation 

(29)  

at y = *l .  On taking y = 1 in (29)  branch points occur on the unit circle U = eie at 
values of 6 given by 

q2(w2 - 2 ) +  q ( 6 +  9) +4qJqw =y[2q( l+  q )  + 2 q J q w ]  

2 cos e = --*J3 1 -- 
Jq ( Y2 

representing two complex conjugate pairs. The branch points at y = -1 are not on 
\ U (  = 1; they are given by 

' / 2  

w = --*iJ3( 3 
1 -:) Js 

and yield an additional pair of connection curves belonging to Ci+. It is to be expected 
that curves other than ( U [  = 1 belonging to C r  will show an odd-even effect on m. 
The significance of these contributions to C? requires further numerical investigation. 
The full set of connection curves for m = 2 and q = 3 is shown in figure 1, where the 

Figure 1. The connection curves of A ,  defined in (28) for the case q = 3 in the z = eK place; 
0 denotes a branch point. 
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arcs lying mainly in the left half plane connect the points given by (31) and are not 
circular. The branch points in (3) occur at 

6 = a  * 4 3  

and so the arcs on Ihl= 1 are of constant length 2 . ~ 1 3 .  
For m = 3 and q = 3 T~ is a 3 x 3 matrix yielding a characteristic equation 

A i  - 9u3(6J3 ~2 + l W 3  + 3 ~ 3  + 16~1)A;  

+ 27u6(42d3 w3+ 28743 w1 +9w4+ 252w2+ 618)A1 

- 81 ~ ~ ( 9 4 3  w,+ 32443 w,+ 88643 + 1 14w3+ 1200~1)  = O  

w. = uj + U-J 

(33) 

(34) 
which again illustrates the symmetry represented by (26) and (27). On the real w1 axis 
branch points of AT occur at w1 = 1.5194.. . and w1 = -2.199..  . . The domain Ihl= 1 
in (4) connects these two branch points by the real line segment between them; in the 
z plane this is the arc of the circle 1 + J 3  eie shown in figure 2 and a real line segment 
connecting the points z = - 1.696 . . . and z = -0.1 127 . . . . Figure 2 shows the connection 
curves C:’ for Ihl= 1; the extended system of connection curves is shown in figure 3 
indicating the probable presence of structure in C, additional to the circle Iu I = 1 .  An 
assessment of this additional structure awaits an extension of these calculations to 
larger values of m and will be reported elsewhere. 

In a recent paper Martin (1986) obtains the partition function zeros of finite m x n 
lattices for the q-state Potts model. In the staggered ice model representation Martin 
shows that for m x a) strips it is possible to confine the eigenvalues which are maximum 
in modulus to a single block of the transfer matrix and claims that finite lattice results 
can provide a good image of C,. In the present context, when (and only when) such 
a factorisation is possible C,,, will be a set of connection curves. Martin offers no 
explicit comparison of the finite lattice results with these curves. For example, in his 
figure 1 (m = 4 ,  n = 32, q = 4 )  the endpoints are claimed to be close to the branch 

where 

,4 

Figure 2. The connection curves C:+ in the z = e K  plane obtained from (33); 0 denotes 
the branch points of AT. 
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Figure 3. The extension of the connection curves in figure 2 in the domain of (4). 

points of C,, but the data reveal that there are 16 branch points and at most 12 
endpoints. Presumably more structure is present in C, than is indicated in figure 1. 
The penultimate paragraph of Martin (1986) invites our comment. In the staggered 
ice representation the model loses the duality symmetry and (unlike C',+ above) the 
loci C,,, do not contain arcs on [ U [  = 1, for example C,  extends to a very poor estimate 
of the critical point. The Ising model at q = 2 is not a special case as is claimed. 

For the triangular lattice with m = 2 and a choice of the two boundary conditions 
shown in figure 4, referred to as (a)  and ( b ) ,  the characteristic equation of T, is 
A:- [ z 6 +  (2q - l )z2+2(q - 2)2+ ( 4  - 2)2]A, + Z ' (Z  - 1 ) 2 ( ~  + - 1) = O  (35) 
for (a )  or 
A;- [ z 6 +  z 2 ( q  + 1) +4z(q -2) + ( 4  - 2)(q - 3)]Al 

+ z ~ ( z -  1 ) 2 [ 2 ~ 4 + 4 ~ 3 ( q  - 1)+ z2q(q - 1 ) + ( 2 ~  - l ) (q  - l ) (q  -2)]=0 (36) 
for (b). 

The branch points of AT and the connection curves are given by (17)  and the 
intersection points of the extended connection curves with the real axis are obtained 

( b )  

Figure 4. The boundary conditions ( a )  and ( b )  used to obtain A, in (35) and (36). 
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Table 1. The positive real axis intersection points of the extended connection curves of 
A, in (35) compared with the exact critical point of the Potts model on the triangular lattice. 

9 1 2 3 4 5 6 7 8 9 10 50 
2, 1.5321 1.7321 1.8794 2.0000 2.1038 2.1958 2.2790 2.3553 2.4260 2.4920 3.9089 
Intersection 
points 1.5000 1.7321 1.8966 2.0289 2.1416 2.2407 2.3298 2.4111 2.4862 2.5560 4.0254 

from the roots of the equation 

dyldz = 0. (37) 
Those roots of (37) which form an approximation to the critical point are shown in 
table 1 for a range of q. For q 3 4 and q = 2 the exact critical point is given by a root 
of the equation (Hintermann et a1 1978) 

Jqu3+3u’= 1. (38) 
It is generally accepted that (38) also holds for q = 3. The comparison of the real 

axis intersection points with the exact critical points in table 1 shows that they are 
encouragingly close approximations considering the low order of approximation at 
m = 2. The extended connection curves obtained from the roots of (17) for boundary 
conditions ( a )  and (b) are displayed in figures 5 ( a )  and (b )  respectively, and are 
superimposed in figure 5(c). Clearly the boundary conditions have had an effect (which 
we would expect to be maximal at m = 2), but even so the overall features are 
comparable and the closed curve in figure 5(  a )  is very closely followed by a combination 
of two of the branches of the resolvent (17). The extended connection curves for the 
case q = 4 in (36) are shown in figure 6; again the ‘broad bean’ shaped closed curve 
appears as the curve containing the critical point, which is at zc=2 .  The authors 
anticipate that these closed curves are already close to part of C,.  

4. The Ising model on a non-planar lattice 

Here we present an application of the present formalism to a two-dimensional Ising 
model on a non-planar lattice for which no exact information is available. The example 
chosen is a simple quadratic lattice with equal interactions between nearest-neighbour 
( N N )  and next-nearest-neighbour ( N N N )  distances. The Hamiltonian is given by 

-/3H = K U~U, + K C ~ i ~ j .  
N N  N N N  

(39) 

Ising models which include an interaction range extending beyond nearest neighbours 
have been investigated by developing high- and low-temperature series expansions 
(Dalton and Wood 1969). For the present model the series expansion estimate for the 
critical point is 

eKc= 1.209. (40) 
For m = 2 and 3 the block T~ is quadratic and A I  is defined by the equations 

A: - A,(  z3 + z + 2) + ( z - 1 ) 2 (  Z* + 32 + 1) = 0 ( m  = 2 )  (41) 
and 

A: -A1(z9+ 3z3+3z2+ 1) +3z’[(z9+ l ) ( z  + 1) - z 2 ( z 3  + l)’] = 0 ( m  =3)  (42) 
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Figure 5. ( a )  and ( b )  are the extended connection curves of A ,  in ( 3 5 )  and (36) respectively 
for the case q = 3, in the z = eK plane; 0 denotes the branch points. In (c), ( a )  and ( 6 )  
are superimposed. 
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Figure S. (continued) 

Figure 6. The extended connection curves of A, in (36) for the case q = 4 in the z = eK 
plane; the exact critical point is at z = 2 and the curve intersects the real axis at z = 2.0207. . . . 

where z = e4K. For m = 4, A1 is a four-valued function defined by the characteristic 
equation of T~ which is 

/2z4c1, 4z2 8Z2c6 2 \ 

2z-2 I 22' 2c4+2 8c2 I 2z2c6 4c2 6c4+2 ~ - ~ + 1  T l ( Z )  = 

\ 2 4z-2 4z-4+4 z - 8 + 1 /  

(43) 

where z = eK and c, =cosh nK. 
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, 
-3 -2 -1 0 

The connection curves of Al 'in (41) are C:' and have been presented in figure 
4( 6 )  of I ,  and the curves in the extended domain of (4) are shown in figure 7 and are 
the branches z,(y) of the algebraic function 

4y2(z - 1 ) 2 ( ~ 2 + 3 ~ +  1)  = ( z 3 +  ~ i - 2 ) ~  y real, z = e4K (44) 

1 2 

(see (17)). The intersection with the positive axis occurs at 

eK = 1.241.. . (45) 
which is already quite close to the critical point (40). At m = 3,  although the function 
A1 is still only two valued the number of branch points increases. The system of 
connection curves over all of the branch points is shown in figure 8. In the extended 
domain of (4), these are the algebraic curves z i ( y )  defined by 

~ ~ Y ' z ' [ ( z ~ +  l ) ( z  + 1 )  - z'(z' + l)'] = ( z 9 +  3 z 3  + 3 z 2  + 1)' ( z  = e4K ). (46) 
The feature of particular interest is the 'near' overlapping arcs in the right half plane 

Figure 7. The extended connection curves of A, in (41) in the z = e4K plane; 0 denotes 
the branch points. 

Figure 8. The extended connection curves of A ,  in (42) in the z = e4K plane; 0 denotes 
the branch points. 
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in the approach to the real positive axis. The appearance of a closed curve which 
intersects the positive real axis is a feature common to both m = 2 and m = 3. The 
branch points which lie on this curve in figure 8 ( m  = 3) generate the closed curve in 
the extended domain (4); the intersection with the positive axis occurs at 

eK = 1.217. .  . (47) 

with a corresponding value of 1.23 from the ‘near’ overlapping arc. 
At m = 4, A, defined by the characteristic equation of (43) has 58 branch points, 

those lying in the complex plane being shown in the complicated system of connection 
curves shown in figure 9. Those branch points not on C:+ can be eliminated by 

Figure 9. ( a )  The complex branch points and connection curves of A, defined by the 
characteristic equation of T~ in (43) in the z = e4K plane. The branch points 0 are labelled 
1, 2 or 3 according to the equal roots being maximum, second maximum, or smallest in 
modulus. Only four complex branch points are labelled 1 and only these lie on CA+. ( b )  
The extended connection curve CAt abstracted from the connection curves in ( a ) .  At all 
points on the curve the branches of A, which are equal in modulus are simultaneously 
maximum in modulus. 
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evaluating the four roots at each branch point. In figure 9(a)  each branch point is 
labelled 1 ,2  or 3 according to whether the roots which are equal are maximum, second 
maximum or smallest in modulus, respectively. The curve Ci+ emerges from its branch 
points until an intersection point is reached where more than two roots are of equal 
modulus. The path which emerges from an intersection point must again be determined 
by a determination of the four values of A l .  The outcome in the present case is the 
curve shown in figure 9(b). More structure has developed in the neighbourhood of 
the origin, and the curve extending into the negative half plane is also a feature in 
figure 8 for the case m = 3. The approximation to the critical point is 

eK = 1.2127.. . (48a) 

and closer to the series estimate (40). A purely numerical treatment at m = 5 yields 
the corresponding intersection point to be at 

(48b) eK = 1.2110.. . . 

5. The two-dimensional spin-1 Ising model 

Here we consider the nearest-neighbour spin-1 Ising model on the simple quadratic 
lattice where the Hamiltonian is 

- P H  = K (49) 
N N  

and the spin variables u, take the values 1, 0 and -1. Ising models with spin values 
of 1 and have been studied using low-temperature series expansions by Fox and 
Gaunt (1970, 1972) and Fox and Guttmann (1972); their estimate for the critical 
temperature on the quadratic lattice is 

eCKc = 0.5533 * 0.0012. ( 5 0 )  

We have considered only the case m = 2 where the branches of A I  are the eigenvalues 

1 + z 4  2 2 ( 1 + ~ ~ )  
2 1+z-4  2 ( 1 + ~ ~ )  z-l 

l + Z '  1+z-* 2+z+z- '  1 
22 2z-' 4 1 

defined by the equation 

A t -  ( 1 6 ~ ~ -  16c2+2c+7)A;+2(c - 1)[16c2(c+ 1)*- 1 2 ~  -7]A: 

- 16( c - 1 ) 2 ( 4 ~ 3  + 3c2 + c + 1)Al+ 32( c - c + 1) = O  ( 5 2 )  
where c = cosh K .  The connection curves of A I  are shown in the c plane in figures 
lO(a) and ( b ) ,  and the branch points are again labelled 1 ,2  or 3 according to whether 
the branches of A I  which are equal are maximum, second maximum or smallest in 
modulus, respectively. Those curves which form C:+ are shown by the full curves in 
figure 10. The extended connection curves in the domain of (4) are shown in figure 
11; the extension of C:+ yields a single intersection point on the real positive axis at 
a point corresponding to 

e-K = 0.5195. (53) 
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Figure 10. ( a )  The connection curves of A, in ( 5 2 )  in the cosh K plane. The branch points 
0 are labelled according to the scheme in figure 9 ( a ) .  (6) A blow up of the connection 
curves in the neighbourhood of the negative axis. The curves which belong to C:+ are 
shown by the full curve. 

Figure 11. The extension of C;' in figure 10 in the domain of (4) shown with an extension 
of a connection curve through the branch point denoted by 0 which does not belong to Ci+. 

A striking feature of the extended connection curves is again the appearance of 'near' 
overlapping arcs in the vicinity of the critical point. In the present case however the 
arc lying close to C:' is an extension of the curve through the branch point marked 
with an open circle in figure 11 which does not form part of C:+; its intersection point 
with the real axis occurs at 

e-K = 0.555 . . . (54) 

which is very close to the critical point estimate (50). In 0 3 it was observed that the 
duality symmetry for the spin-$ case on this lattice gave rise to branch points not 
connected by Ck+ but which yielded extended connection curves overlapping C r .  A 
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similar phenomenon producing a ‘near’ overlap may have occurred in the present case 
with (54) viewed as a legitimate estimate of the critical point. 

6. The three-dimensional k ing  model 

A very small scale application to the three-dimensional Ising model is possible in terms 
of the 2 x 2 x 00 system which with full toroidal boundary conditions imposed is 
equivalent to a two-dimensional 2 x 00 system with anisotropic interactions in the ratio 
1 : 2. It is thus possible to employ Onsager’s solution to obtain the eigenvalues of the 
16x 16 transfer matrix in analytic form. The eigenvalue A: is given by 

A: = 4 sinh’ 2K eYl+’3 

sinh 2K cosh y, = cosh 4K cosh 2K -sinh 4K/(J2)  

sinh 2K cosh y 3  =cosh 4K cosh 2K +sinh 4K/(J2) .  

( 5 5 )  

where 

(56a) 

(56b) 

and 

The other branches of Al are given by ( 5 5 )  with exponents -yl - y 3 ,  y 3  - y1 and y1 - y 3 .  
Using the latter pair of branches in conjunction with AT we can investigate the branch 
points and connection curves directly using equations of the type (7). We find that 
the connection curves are given by the branches z (  p) of two algebraic functions defined 
by 

z6*J2z5+ z4(1 -2p) + z2( 1 +2p) F J 2 z  + 1 = 0 p real, z = e-2K. (57) 

In (57) lpld 1 corresponds to the domain Ihl= 1 in (4) and the branch points of A: 
occur at p = *l .  If z(p)  are the branches of one of the equations (57) then the branches 
of the other are given by z ( - p ) - ’  and hence the branch points occur in reciprocal 
pairs. In fact both equations can be combined on multiplication into a single equation 

u6 - 4 p ~  + u4( 3 + 4p2) + u3( 8 - 8 ~ ’ )  + U ’( 3 + 4p2) + 4pu + 1 = 0 ( 5 8 )  

where U = e-4K, which traces out all of these connection curves in the U plane. The 
branch points can be determined exactly; at p = 1 (58) becomes 

(U’+ l ) (u4-4u3 +6u2+4u + 1). 

COS’ e = (J5 - 1)/2 

r cos e = 1 * ( 1  + cos2 e) ’ / *  

(59 )  

The roots of the quartic factor are of the form re*ie and -( 1/ r)e*”, whence we find that 

(60) 
and 

(61) 
which in fact determines all of the branch points. These, together with the connection 
curves, are shown in figure 12(a), and the extended connection curves of the branch 
points at U = *i and those in the right half plane are shown in figure 12(b). The 
intersection points with the real positive axis can be determined from the roots of the 
equation 

dpldu = 0 (62) 
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Figure 12. ((I) The algebraic curves of ( 5 8 )  in the U = e-4K plane which are the connection 
curves involving AT for the smallest possible case of the three-dimensional Ising model 
on a 2 x 2 ~ 0 2  strip; 0 denotes the branch points. ( 6 )  The extended connection curves 
through the branch points at U = *i and the pair in the right half plane. The zeros of the 
4 x 4 x 4 cube obtained by Pearson (1982) are shown in the inset for comparison. 

which are those of the symmetric polynomial equation 

2u8-9u7+ 6u6- 7 ~ ’  +48u4-7u3+6u2 - 9 ~  + 2  = 0. (63) 

The real axis intersection points are 

U = 3.2007.. . U = 0.372 49. 

and 

U = 2.6846. . . U = 0.312 42. . . . (64b) 

The critical point estimate from series expansions is at U = 2.427. . . and the critical 
point of the anisotropic 2~ model is at U = 3.3829.. . . In figure 12(b) the zeros of the 
4 x 4 ~ 4  cube obtained by Pearson (1982) are shown for comparison. 

7. Models with three-site interactions present 

Here we consider examples of one-parameter models defined in terms of triplet 
interactions. Two generalised Potts models are of interest where the lattice is the 
triangular lattice and the interaction is scalar Potts-like over the three sites of each 
elementary triangle. The site variables ui take the values 1,2, .  . . , q which can be 
viewed as colours. The reduced energy of any configuration of the lattice in units of 
K is simply equal to the number of triangles whose vertices are all the same colour. 
The two models in question are the cases where (a) the interactions are defined over 
only half of the triangles (the up pointing triangles say) of the lattice, and (b) the 
interactions are defined over all of the triangles. Baxter er a1 (1978) have derived a 
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duality relation for model ( a )  (including the case where Potts pair interactions are 
also present) which for triplet interactions only can be expressed in the form 

W-N/2ZN(q, w)  = wN/2Z,(q, w - l )  (65) 

where 

(66) K 
w = ( z  - l ) / q  z = e .  

The argument following (24) for the Potts models can now be applied here and the 
characteristic equation of T~ can be mapped out in terms of reduced polynomials of 
the type defined in (27) with U replaced by w; hence the extended connection curves 
for any value of m include the circle Iw( = 1. It is known rigorously (Wu and Zia 1981) 
that for q = 2 and q 2 4  the critical point is the point w = 1 .  The argument here shows 
that CF for all m includes arcs of the circle ( w (  = 1. This symmetry is already evident 
at m = 2 where 

(67) K A;- (z2+8)AI + 4 ( ~  - 1 ) 2  = 0 

which on writing A I  = qwy yields the reduced equation 

z = e  

y 2 +  [q( w + w-l )  +2]y + (q - 112 = 0 (68) 

showing that AT has branch points at w = e” where 

c o s 6 = 1 - 2 / q  and 7~ (69) 

For case ( b )  above no duality relation exists. For m = 2 A I  is given exactly by (67) 
which are connected on IwI = 1 .  

with z replaced by z2. Thus the extended connection curve is the circle 

z2 = 1 + q eie (70) 

indicating an approximation to the critical point for q = 3 of eCK = 4. Enting and Wu 
(1982) have developed low-temperature series expansions for this model in the special 
case of q = 3 .  On the basis of a low-temperature expansion of the order parameter up 
to terms of order 33 in the variable e-K these authors obtained the critical point estimate 

0.5038 f 0.0005 (71) 

and therefore the estimate of 4 obtained from (70) is apparently already very close to 
the critical point. At m = 3 (and q = 3) T~ is the matrix 

z 6 + 2  6 ( z 3 + z + l )  62 

3z 6 ( z + 2 )  6 
(72) 

Figure 13 shows C:+ compared with the circle (70) which is Ci i  in the z2 plane. The 
intersection of the extension of C:* with the real axis occurs at 

(73) 
The three-spin Ising model on the triangular lattice (Baxter and Wu 1974, Baxter 

1974, 90 2 and 5 of I )  possesses a self-dual symmetry of precisely the same type as the 
two-dimensional Ising model (Wood and Griffiths 1972, Merlini and Gruber 1972) 
with a dual temperature K * defined by 

K 
T ] =  z 3 + z + l  4z2+2z+12  2 z + 4  z = e .  

e-K = 0.509 28 . .  . . 

ss* = 1 s = sinh 2 K .  (74) 
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Figure 13. The connection curves which form Ci+ of A I  (shown dotted) defined by (72) 
in the z2 = eZK plane. The extended connection curve C:+ is the circle (70) with 9 = 3 
shown by the full curve. The extension of Cl+ intersects the real axis at z-' = 0.509 28 . .  . , 
and the series estimate for the critical point is z;' = 0.5038 f 0.0005. 

The previous arguments can again be carried through to infer that the characteristic 
equation of T, for any value of m can be mapped out in terms of reduced polynomials 
of the type defined in (27) with U replaced by s, and the circle Is[ = 1 appears as part 
of the extended connection curves CL+ for all m. For example at m = 3 with toroidal 
boundary conditions 

3z-2+ 4 ,  z6 
3z2+z-6  

T I = (  (75) 

and writing 

A, = $ sinh 4KA 

A 2  - 8 ( ~  + F ' ) A  +48 = 0 

(76) 

(77) 

where A has a branch point at s = eie, cos 8 = *d3/2. Again using screw boundary 
conditions (Wood and Griffiths 1972) with a screw pitch of 3, the 8 x 8 transfer matrix 
yields a characteristic equation 

A2(A6-2cosh2KA5+16sinh22K cosh22K)=0 (78) 

y 6 - y 5 + ;  (s + s - I ) - 2  = 0. (79) 

COS* e = ;(95 (80) 

which on writing A = 2 cosh 2K y yields the factor 

A: has branch points at s = eie where 

and Is1 = 1 is the extended connection curve obtained from (78) (see figure 7 of I). 
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8. The king model in a field 

Within the formalism of the present work we briefly consider the original theorem of 
Lee and Yang (1952) and its extension to the general spin model by Griffiths (1969). 
In this we now consider a many-parameter model mapped out in terms of a set of 
temperature variables z{z i  = eKi} and a field variable p = esH, where K ,  is the interaction 
parameter over a range of type i. Following the notation of Griffiths (1969) the 
Ising-model spin variables take the values p, p - 2, p - 4, . . . , 2  - p ,  -p ,  corresponding 
to a spin of p/2. The partition function for any arbitrary system of N spins can be 
written in the form of a symmetric polynomial in the variable p2: 

where A k ( z )  are positive temperature-dependent coefficients and Ak = A N p - k .  The 
theorems of Lee and Yang (1952) and Griffiths (1969) state that for ferromagnetic 
interactions ( K l  > 0) and at real values of z the zeros of (81) all lie on the unit circle 
IpI = 1 (see also Ruelle 1969). In the limit of N + CO one envisages that the zeros of 
(81) become dense over parts of the unit circle (pI = 1. 

In the present work we are in fact concerned with the limit of N + CO in the limiting 
locus C,,, for a semi-infinite regular lattice on which a transfer matrix Tn can be defined. 
For any such general spin Ising model the transformation p + p-' is simply equivalent 
to a re-ordering of the basis of Tn . Hence the whole of the characteristic equation of 
Tn can be mapped out in terms of the variables z and w = p + p- ' .  Thus at real 
temperatures and (pI = 1 or p real the eigenvalues of Tn are either real or in complex 
conjugate pairs, and the extended connection curves in the domain of (4) map out the 
circle lpI= 1 for all m. The branch points of A, are given by the resolvent (20) of I 
which at h = 1 is now a polynomial in w with coefficients which are multinomials in 
the temperature variables z. The algebraic functions w i ( z )  defined by this resolvent at 
h = 1 denote the location of the branch points as the temperature varies, and for real 
w the branch points in the p plane lie on either the real axis or the unit circle. The 
eigenvalue AT cannot have any branch points on the real axis of p at finite values of 
z. This follows from the form of Tn which can always be written in the form 

T n = p - N p T L ( ~ ,  p2) .  

T' is a strictly positive matrix everywhere on the real axis of p. Hence in the domain 
of real w for finite z, if A: has any branch points they must lie on the circle )pI = 1. 
Thus we expect AT to possess algebraic singular points on the unit circle whose location 
is temperature dependent. In the trivial example of the one-dimensional nearest- 
neighbour model (p = 1) AT has a branch point at p = eie where 

sin 6 = i z - '  ( z  = e") (83) 

which in the limit of zero temperature occurs at p = k l ,  and in the limit of infinite 
temperature at p = *i. Similar limits occur in nearest-neighbour models generally, 
since if we consider the limit 

1" lim A i / z s  i = 1,2, . . . , R (84) 

where s is the total number of nearest-neighbour pairs in G and connecting G ,  and 
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G, (see 5 2 of I) and A i  are the eigenvalues of Tn, we obtain 

i = 3 , .  . . , R  

and 

lim ,+ , /A2 = pZmP. (86) 

Hence the 2mp roots of unity are limiting branch points of AT in the limit of T+0.  
Again in the limit of z + 1 

2-m 

A: = (p' +P'-~+. . .+p-')"' 

A i = O  i = 2 , .  . . , R (87) 

and thus AT has limiting branch points at p = when eis are the p complex roots 
of the ( p  + 1)th roots of unity. We are thus led to expect that in the range 1 < z < 00 
branch points of A: will lie on the unit circle, and that in the limit of m+o3 the 
singular points of the limiting partition function per site A will evolve through a 
sequence of algebraic singular points. At T = T, we expect branch points on /p i= 1 
to approach the limit p = 1 in the limit of m +CO. 

9. The hard square and hard hexagon lattice gases and the q colourings of the 
triangular lattice 

The nearest-neighbour hard core lattice-gas models are models in which the atoms are 
prohibited from simultaneously occupying nearest-neighbour ( NN) sites by an infinite 
repulsive short-range interaction. If ti  are the site variables with the values ti  = 1 and 
0 denoting an occupancy and a vacancy, respectively, of site i, then the grand canonical 
partition function E for any such lattice model can be written as 

where z is the activity variable. The hard square gas on the simple quadratic lattice 
has been studied by numerous authors (Gaunt and Fisher 1965, Ree and Chestnut 
1966, Runnels and Combs 1966, Runnels 1972, Nilsen and Hemmer 1967, Baxter et 
a1 1980, Wood and Goldfinch 1980). For the hard hexagon gas on the triangular lattice 
the partition function (88) has been obtained exactly in the thermodynamic limit by 
Baxter (1982). Here we consider the present formalism applied to both of these models. 

The work of Nilsen and Hemmer (1967) also considered the location of the partition 
function zeros in the z plane for semi-infinite strips in the hard square gas case but 
with non-toroidal boundary conditions which allowed a one-dimensional representa- 
tion of the problem. These authors developed a formalism which employed the seldom 
used grand pressure ensemble and C, is obtained from the z-dependent residues of 
the poles of the grand pressure partition function. In this, some similarities with the 
present work can be seen in which C,,, is obtained as a subset of trajectories in the z 
plane over which the residues are of equal modulus. Nilsen and Hemmer employed 
their method to obtain an estimate of the singularity in the limiting partition function 
per site on the negative real axis. 
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In the present work the algebraic functions A I  for the hard square gas and m = 2, 
4 and 6, respectively, are defined by the equations 

m = 2  A ; - A ~ ( z +  i ) - z  = O  (89) 
m = 4  (90) A:-A:(z2+3z+ l )+A,z (z2  - z - I ) +  z3 = 0 

m = 6  A;- A:(z3+ 5 z 2 + 5 z +  1) +A:z(2z4+6z3 -42 - 1) 

+ A : z ~ ( ~ z ~ + ~ z ~ + ~ z ~ + ~ z + ~ ) + A ~ z ~ ( ~ z ~ + ~ z ~ -  z - 1) - z * = O  (91) 

and for the hard hexagon gas with m = 3 and 6 

m = 3  A: - AI( 1 + Z )  -22 = O  (92) 

(93) 

m = 6  A: - A:(z2+4z + 1) -2A;z(2z4+ 42 + 1) +2A:z3(3z2+7z 1 4 )  

+4A1z5(z - 1) - 8 ~ '  = 0. 

In figures 14-16, we show the connection curves of C r  for (90), (91) and (93), 
respectively, extended in the domain of (4). For the hard square gas the intersections 
with the positive z axis occur at 3.016. . . (m = 4) and 3.730. . . (m = 6); the most reliable 
estimate of zi is 3.796 obtained from the low-density expansions of Baxter et a1 (1980). 
In figure 16 the intersection point occurs at z = 11.445. . . and the exact critical point 
is z, = (1 1 + 5&)/2 = 11.090. . . , 

- 3  2-2 -1 01 1 2 3  

-1 . 
Figure 14. The hard square gas: the extended connection curves of A ,  ( m  = 4) of (90) in 
the z plane. 

In all of the examples of AI above branch points occur on the negative real axis 
and the domain (hl = 1 in (4) traces out a system of connection curves along the real 
negative axis which connect up these branch points. Viewed over a sequence of 
increasing m these represent a sequence of overlapping line elements converging to a 
part of C,  which is the line element on the negative real axis with an endpoint close 
to the origin where the limiting partition function per site is singular. For the hard 
hexagon model (92) and (93) yield branch points at -5 +2d6  = -0,101 02.. . and 
-0.093 77. . . , respectively. The singularity in the thermodynamic limit is at z = 
(1 1 - 5J5)/2 = 0.090 169. . . (Baxter 1982). For the hard square gas the corresponding 
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10- 

5 -  

Figure IS. The hard square gas: the extended connection curves of A,  (m = 6) of (91) in 
the z plane. The real positive axis intersection point is at z = 3.730.. . , and the series 
estimate for z, is 3.796., . . 

Figure 16. The hard hexagon gas: the extended connection curves of A, ( m  = 6) in (93) 
in the z plane. The real positive intersection point is at z = 11 .44 .  . . , and the critical point 
z, is 11.090. . . . 

branch points move smoothly from z = -3 + 2d2 = -0.171 57. . . at m = 2 to z = 
-0.119 496.. . at rn = 13. A similar sequence was obtained by Nilsen and Hemmer 
(1967). In an initial investigation of the present techniques using the hard square gas 
model one of us (Wood 1985) considered the transformation 

A I  = A + (1/ r )  TrT1 (94) 

where r is the dimensionality of T]. On an examination of the connection curves of 
A +  for the case m = 4 in the domain Ihl= 1 only, an intersection point on the real 
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Figure 17. The connection curves of A in (94) where A, is given by (90) and the intersection 
point with the real axis beyond the branch point is at x = -0.1 19 392. . . . 

negative axis occurs at z = -0.119 392. . . . These curves are shown in figure 17 in which 
the connection between the branch points on the negative axis becomes extended by 
the tiny loop element shown in the inset of figure 17. This behaviour and the comparison 
with the series estimate of z = -0.1194*0.0002 obtained by Gaunt and Fisher (1965) 
for the real negative singularity tempted the conjecture that the above result may be 
exact. This is not the case and estimates of this singularity have now been improved 
to 

z = -0.1 19 338 8809 * 0.000 000 001 (95) 

by Guttmann (1987) and Dhar (1986). 
Baxter (1986) has recently obtained exactly the chromatic polynomial of the plane 

triangular lattice in the thermodynamic limit. This model is obtained as the zero- 
temperature limit of the antiferromagnetic q-state Potts model in which the only lattice 
configurations which can occur are those in which the vertices of each elementary 
triangle are in different states. Alternatively the model can be viewed as a hard core 
model of a gas of q components or colours for which nearest-neighbour exclusion 
applies to atoms of the same type. For m = 4 and arbitrary q AI is the two-valued 
function given by 

A : - A I u ( u ’ + ~ u  -3 )+2u3(u3+2u2  - 1 )  = O  (96) 

where U = q - 3. For this model the transfer matrix and T, are positive matrices for 
q > 4  and A,  in (96) has a real branch point at q =4. Baxter has also obtained the 
locus of zeros of the chromatic polynomial C ,  which in figure 18 is compared with 
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2- 

1- 

/ 

1 2 3 4  

- 3 t  

Figure 18. The extended connection curves of A,  of (95) in the q plane; C, is the full 
curve obtained by Baxter (1986). 

the connection curves C:+ of (96) in the domain of (4)t. The branch points are marked 
by full circles. The curves C:' represent the lowest order of approximation in this 
case and the real axis point q = 4 has emerged exactly. In addition, C:' appears to 
have given a faithful representation of the overall structure of C,. An investigation 
of Ck+ would be of great interest here. 
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